# Network analysis of social distance



# What is network analysis

- Statistical analyses typically assume that actors are independent
  - Therefore, changing attributes of one respondent can only change outcome of one respondent
    - or, if child A revises for their maths exam, it won't improve the score of child B or C.
- Network analysis assumes an interdependency of actors
  - Therefore, changing an attribute for one respondents can influence outcomes for others
    - or, if children B and C are swap stickers, then A and B also swapping will increase chances for A and C swapping
  - Social connections can have influence over our outcomes, whilst the connections of our connections can be important



http://www2.ucsc.edu/whorulesamerica/power/corporate\_community.html

http://www.orgnet.com/hijackers.html

http://www.cmu.edu/joss/content/articles/volume1/Freeman.html

http://www.thenetworkthinkers.com/2012/10/2012-political-book-network.html

Network data can also come from secondary surveys:

Occupational networks (red to violet for low to high CAMSIS, grouped into 7). (see <u>www.camsis.stir.ac.uk/sonocs</u>)





1991

Exemplar Geller households from TV series *Friends* (1991-97)











1993

1995





Is Britain Pulling Apart? May 2013

1997



## Abstracting network data from surveys

|                 |          | Gym   | Running | Football | Golf | Swimming | ••• |
|-----------------|----------|-------|---------|----------|------|----------|-----|
| Man's<br>sports | Gym      |       | 658     | 31       | 113  | 1,595    |     |
|                 | Running  | 997   |         | 33       | 63   | 1,113    |     |
|                 | Football | 766   | 417     |          | 64   | 2,384    |     |
|                 | Golf     | 866   | 375     | 18       |      | 1084     |     |
|                 | Swimming | 1,639 | 758     | 41       | 167  |          |     |
|                 |          |       |         |          |      |          |     |

#### Women's sports

## No. of male-female partners

### performing different sports

Note: 6,927 couples with 65k combinations across 24 sports Source: Understanding Society, 2010.

## Abstracting network data from surveys

|                 |          | Gym  | Running | Football | Golf | Swimming | •••• |
|-----------------|----------|------|---------|----------|------|----------|------|
| Man's<br>sports | Gym      |      | 1.23    | .89      | 1.00 | 1.28     |      |
|                 | Running  | 1.13 |         | 1.16     | .65  | 1.07     |      |
|                 | Football | 1.02 | 1.10    |          | .78  | 1.12     |      |
|                 | Golf     | 1.02 | .86     | .60      |      | 1.08     |      |
|                 | Swimming | 1.24 | 1.13    | .98      | .89  |          |      |
|                 |          |      |         |          |      |          |      |

#### Woman's sports

Representation levels of male-female partners performing different sports

Note: 6,927 couples with 65k combinations across 24 sports Source: Understanding Society, 2010.



Is Britain Pulling Apart? May 2013







Is Britain Pulling Apart? May 2013





## Some conclusions

- New avenues for research by exploring social networks between social units via secondary survey data
  - Comparative research options over time and countries
  - Emerging, very large surveys (e.g. Understanding Society) should address low numbers of connections
- Is Britain Pulling Apart?
  - Probably not (in occupational network patterns)
  - Maybe (in leisure patterns)
  - Certainly (in political patterns)
- Forthcoming priorities
  - Exploring systematic specifications for network structures as appropriate to the application area
  - Longitudinal profiles on individuals and their characterisation in networks (e.g. contagion by new household members)
- Secondary data is fairly easy to formulate for these analyses (see appendix - also at www.camsis.stir.ac.uk/sonocs)

- \*\*\*\*\*Exporting only those linkages which are above the expected values
- \*\*create frequency dataset
- capture drop freq
- gen freq = 1
- collapse (count) freq, by(hocc wocc)
- list in 1/20
- \*\*\*\*\*Find total for each category
- capture drop tot
- egen tot=sum(freq)
- summarize tot
- \*\*\*\*\*\*\*Find totals for men and women
- capture drop nhocc
- capture drop nwocc
- egen nhocc=sum(freq), by(hocc)
- egen nwocc=sum(freq), by(wocc)
- list hocc wocc freq nhocc nwocc in 1/20
- \*\*\*\*Find percentage for each category for men and women
- capture drop phocc
- capture drop pwocc
- gen phocc=nhocc/tot

- gen pwocc=nwocc/tot
- summarize
- list hocc wocc freq phocc pwocc in 1/20
- \*\*\*\*\*\*Calculate expected numbers of women
- capture drop ewocc
- gen ewocc=pwocc\*nhocc
- Summarize
- list hocc wocc ewocc freq nhocc nwocc in 1/20
- \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*
   create expectation surplus
- capture drop value
- gen value=freq/ewocc
- \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*
  label variables
- label variable tot "total number in sample"
- label variable nhocc "total number of males in occupation"
- label variable nwocc "total number of females in occupation"
- label variable phocc "percentage of men in occupation"
- label variable pwocc "percentage of women in occupation"
- label variable ewocc "expected number of partnerships"
- label variable value "Proportions of expected relationships"